On localizations and simpleC∗-algebras
نویسندگان
چکیده
منابع مشابه
Monoidal Bousfield Localizations and Algebras over Operads
We give conditions on a monoidal model category M and on a set of maps C so that the Bousfield localization of M with respect to C preserves the structure of algebras over various operads. This problem was motivated by an example due to Mike Hill which demonstrates that for the model category of equivariant spectra, preservation does not come for free, even for cofibrant operads. We discuss thi...
متن کاملProjectivity of Hopf algebras over subalgebras with semilocal central localizations
Let H be a Hopf algebra over a field k and A a right coideal subalgebra of H , that is, A is a subalgebra satisfying ∆(A) ⊂ A⊗H where ∆ is the comultiplication in H . In case when H is finitely generated commutative, the right coideal subalgebras are intimately related to the homogeneous spaces for the corresponding group scheme. The purpose of this paper is to extend the class of pairsA,H for ...
متن کاملLocalizations on Complex Networks
We study the structural characteristics of complex networks using the representative eigenvectors of the adjacent matrix. The probability distribution function of the components of the representative eigenvectors are proposed to describe the localization on networks where the Euclidean distance is invalid. Several quantities are used to describe the localization properties of the representative...
متن کاملOn Heyting algebras and dual BCK-algebras
A Heyting algebra is a distributive lattice with implication and a dual $BCK$-algebra is an algebraic system having as models logical systems equipped with implication. The aim of this paper is to investigate the relation of Heyting algebras between dual $BCK$-algebras. We define notions of $i$-invariant and $m$-invariant on dual $BCK$-semilattices and prove that a Heyting semilattice is equiva...
متن کاملRemarks on Quintessential and Persistent Localizations
We de ne a localization L of a category E to be quintessential if the left adjoint to the inclusion functor is also right adjoint to it and persistent if L is closed under subobjects in E We show that quintessential localizations of an arbitrary Cauchy complete category correspond to idempotent natural endomorphisms of its i dentity functor and that they are necessarily persistent Our investiga...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Pacific Journal of Mathematics
سال: 1984
ISSN: 0030-8730,0030-8730
DOI: 10.2140/pjm.1984.112.141